翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stellar planetary : ウィキペディア英語版
Planetary nebula

A planetary nebula, often abbreviated as PN or plural PNe, is a kind of emission nebula consisting of an expanding glowing shell of ionized gas ejected from old red giant stars late in their lives. The word "nebula" is Latin for mist or cloud and the term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years.
A mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star.〔 Absorbed ultraviolet light energises the shell of nebulous gas around the central star, appearing as a bright coloured planetary nebula at several discrete visible wavelengths.
Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances.
In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies. About one-fifth are roughly spherical, but the majority are not spherically symmetric. The mechanisms which produce such a wide variety of shapes and features are not yet well understood, but binary central stars, stellar winds and magnetic fields may play a role.
==Observations==

Planetary nebulae are generally faint objects; none are visible to the naked eye. The first planetary nebula discovered was the Dumbbell Nebula in the constellation of Vulpecula. It was observed by Charles Messier in 1764 and listed as M27 in his catalogue of nebulous objects. To early observers with low-resolution telescopes, M27 and subsequently discovered planetary nebulae somewhat resembled the giant planets like Uranus. William Herschel, discoverer of Uranus, eventually coined the term "planetary nebula" for them.〔 At first, Herschel thought the objects were stars surrounded by material that was condensing into planets rather than what is known to be evidence of dead stars that have incinerated any orbiting planets.
The nature of planetary nebulae was unknown until the first spectroscopic observations were made in the mid-19th century. Using a prism to disperse their light, William Huggins was one of the earliest astronomers to study the optical spectra of astronomical objects.〔 On August 29, 1864, Huggins was the first to analyze the spectrum of a planetary nebula when he observed NGC 6543.〔 His observations of stars showed that their spectra consisted of a continuum of radiation with many dark lines superimposed on them. He later found that many nebulous objects such as the Andromeda Nebula (as it was then known) had spectra that were quite similar. These nebulae were later shown to be galaxies.
However, when Huggins looked at the Cat's Eye Nebula, he found a very different spectrum. Rather than a strong continuum with absorption lines superimposed, the Cat's Eye Nebula and other similar objects showed only a small number of emission lines.〔 The brightest of these was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known element. At first, it was hypothesized that the line might be due to an unknown element, which was named ''nebulium''. A similar idea had led to the discovery of helium through analysis of the Sun's spectrum in 1868.〔
While helium was isolated on Earth soon after its discovery in the spectrum of the sun, nebulium was not. In the early 20th century, Henry Norris Russell proposed that, rather than being a new element, the line at 500.7 nm was due to a familiar element in unfamiliar conditions.〔
Physicists showed in the 1920s that in gas at extremely low densities, electrons can populate excited metastable energy levels in atoms and ions which at higher densities are rapidly de-excited by collisions. Electron transitions from these levels in nitrogen and oxygen ions (, (a.k.a. OIII), and ) give rise to the 500.7 nm emission line and others.〔 These spectral lines, which can only be seen in very low density gases, are called ''forbidden lines''. Spectroscopic observations thus showed that nebulae were made of extremely rarefied gas.
The central stars of planetary nebulae are very hot.〔 Only once a star has exhausted most of its nuclear fuel can it collapse to such a small size. Planetary nebulae came to be understood as a final stage of stellar evolution. Spectroscopic observations show that all planetary nebulae are expanding. This led to the idea that planetary nebulae were caused by a star's outer layers being thrown into space at the end of its life.〔
Towards the end of the 20th century, technological improvements helped to further the study of planetary nebulae. Space telescopes allowed astronomers to study light wavelengths outside those that the Earth's atmosphere transmits. Infrared and ultraviolet studies of planetary nebulae allowed much more accurate determinations of nebular temperatures, densities and elemental abundances. Charge-coupled device technology allowed much fainter spectral lines to be measured accurately than had previously been possible. The Hubble Space Telescope also showed that while many nebulae appear to have simple and regular structures when observed from the ground, the very high optical resolution achievable by telescopes above the Earth's atmosphere reveals extremely complex structures.
Under the Morgan-Keenan spectral classification scheme, planetary nebulae are classified as ''Type-P'', although this notation is seldom used in practice.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Planetary nebula」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.